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Asymptotics of superstatistics
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Superstatistics are superpositions of different statistics relevant for driven nonequilibrium systems with
spatiotemporal inhomogeneities of an intensive varidblg., the inverse temperatiwrdhey contain Tsallis
statistics as a special case. We develop here a technique that allows us to analyze the large energy asymptotics
of the stationary distributions of general superstatistics. A saddle-point approximation is developed which
relates this problem to a variational principle. Several examples are worked out in detail.
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I. INTRODUCTION ordinary Boltzmann factor. In this sense, it is a fat-tailed

Many driven nonequilibrium systems exhibit complex dy- Statistics. The parametes, above is related in the super-
namical behavior characterized by spatiotemporal fluctuastatistical model to the average inverse temperature of the
tions of an intensive parametg which may represent an inhomogeneous system, whereas the so-called entropic index
inverse temperature, a chemical potent&lb., in a system ¢ relates to the variance of the fluctuations[27,2§. It is
with inhomogeneous concentrationsan effective friction  worth mentioning that distributions having the form ofja
constant, the amplitude of a perturbing noise, or the locakxponential can be obtained formally by maximizing Tsal-
energy dissipation, as in the case of turbulent flows. Aljig's measure of entropy subject to suitable constraints.

though such systems do not settle to equilibrium, their longy;greover, ordinary statistical mechanics, which correspond
term behavior can often be described in the spirit of equilib-,

fium statistical mechanics by viewi o in the superstatistics picture to the case where there are no
y viewing them as consisting ok ctuati . . d in the limit wh 1

an ensemble of subsystems or “cells” to which are associat ctuations in 8, Is recovered In the imit wherg—

different values ofg. If there is local equilibrium in each 3-26. o _ )

cell, so that statistical mechanics can be applied locally, and For other distributions of the intensive parameggrone

if the fluctuations ofB evolve on a sufficiently large time ends up with more general superstatistics. Generalized entro-

scale, then in the long-term run the entire system can bgies, which are analogs of the Tsallis entropies, can also be

described by a mixture or superposition of different Boltz-defined for these general superstatisfi¢d0], and general-

mann factors having different values 8f Such a mixture of ized versions of statistical mechanics can be constructed, at

various statistics has been termed a “superstatistiisand  |east in principle. It has been shown that the corresponding

has been the subject of various papers .Iated;e, e.g., Refs.. generalized entropies are stapée11].

[2-12)). Many models based on the notion of superstatistics |, his paper we will briefly review the superstatistics

have also been applied successfully to a variety of phySicaéonce t, and then analyze the asymptotic behavior of general
problems, including Lagrangigil3,14 and Eulerian turbu- superspté'ltistics for Iargg values o%lthrt)a enekyyWe will ir?—

lence[15,16], defect turbulencé17], cosmic ray statistics - ; . .
[18], plasmas[19], statistics of wind velocity differences Vestigate how the properties of the functitii), which rep-

[20], and econophysid®1,27. resents the probability distribution of the intensive varigble
What is common to all these problems is the experimental the various spatial cells, determine the asymptotic decay
observation of stationary distributions having “fat” tails. rate of the generalized Boltzmann factor of the superstatis-
Such distributions fall necessary outside the framework ofics. We develop a saddle-point approximation technique
ordinary statistical mechanics, but not that of superstatisticsvhich allows us to treat this problem in full generality. Sev-
For example, if the random intensive paramegein the  eral examples will be worked out in detail to show that the
various cells is taken to be distributed according to a particuasymptotic decay rate of the stationary distributions resulting
lar probability distribution, they? distribution, then the cor- from f(B8) cannot only be a power law, as in the case of
responding superstatistics, obtained by integrating the Boltzaonextensive statistics, but can also be an exponential of the
mann fa}ctoe‘.ﬁE over aIIB, ylelds the nonextensive statistics square root of the energy or, genera”y' a stretched exponen-
of Tsallis defined by the so-calleg-exponential function tja|. We will discuss universal aspects of the large energy
[23-26 asymptotics, thus complementing the consideration in Ref.
ec_fBOEz[l +(q— 1) BoE] M@, (1)  [1] where universal aspects of the low-energy behavior of
) ) o general superstatistics were discussed. The large energy as-
This particular statistics decays as a power law for larggmptotics is of particular physical importance because the
energiesE rather than an exponential, as is the case for theyjis of the observed distributions measured in various ex-
*Electronic address: htouchet@alum.mit.edu perimentge.g., hydrodynamic turbulen¢g9], plasmag30],
"Electronic address: c.beck@gmul.ac.uk and granular medig31]) can distinguish between the various
possible types of superstatistics.
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[l. SUPERSTATISTICS: BASIC CONCEPT adiabatic regimé32]); see Ref[28] for details. For turbu-
éence applications, for example, one may consider a super-
statistical extension of the Sawford model of Lagrangian tur-
bulenceg13,14,33. This model consists of suitable stochastic
differential equations for the position, velocity, and accelera-
tion of a Lagrangian test particle in the turbulent flow. The
uperstatistical extension naturally enters due to the fact that
e local energy dissipation rate in turbulent flows is a ran-
dom variable. Thus the parameters of the Sawford model

energy in each cell. In the long-term run, the system is deb q iabl I Th kinds of model
scribed by a spatiotemporal average over the fluctuging ecome random variables as well. 1hese kinds of mocdels
well reproduce experimentally measured turbulence data

In this way, one may define an effective Boltzmann factor[13 14

B(E) for the whole system as In the following we will use the notation of type-A super-
statistics, keeping in mind that we can always proceed to

type-B superstatistics by replacirfgby f. We will restrict
ourselves to positive values @f and E and will assume, in
wheref(p) is the normalized probability distribution describ- addition, thatf () is everywhere differentiable and unimodal
ing the g fluctuations in the various cells. For so-called (single-bell-shaped curye

type-A superstatistics, one normalizes this effective Boltz-

mann factor and obtains the stationary, long-term probability IIl. LOW-ENERGY ASYMPTOTICS

distribution,

Let us first briefly review the superstatistics concept a
introduced in Ref{1]. Consider a driven nonequilibrium sys-
tem with spatiotemporal fluctuations of an intensive param
eter B, for example, the inverse temperature. Locally, i.e., in
spatial regiongcells) whereg is approximately constant, the
system is described by ordinary statistical mechanics, i.e., b
an ordinary Boltzmann factag 5, whereE is an effective

B(E) = f m f(BePedB=(e5), 2
0

We recall the low-energy asymptotics of superstatistics
p(E) = EB(E), (3)  for reasons of completeness; it was previously discussed in
Z Ref. [1]. Consider a distributiori(8) having mear{8)=2,
and variance

where
: f - , (B = (B?=(B - 5= 0" (6)
o (E)IE. @ Using the definition oB(E), we can write
For type-B superstatistics, thg-dependent normalization B(E) = (e7PF) = @ PoF(g (F-FoEy, (7)

constant of each local Boltzmann factor is included into th oo . . .
averaging process. In this case, the invariant long-term diit%heeg;(sgg{zr(‘jd:/na%g -I\_I‘:’llglgrbtsaﬁzes the exponential term inside

tribution is given by

© -BE 1 - k
p(E) = f f(8)——dg, (5) B(E) = e‘B°E<1 + 0B+ 2 {(Bo - ﬁ)k>5> . (®
0 Z(IB) 2 k=3 k!

whereZ(p) is the normalization constant of the Boltzmann Thus, to second order i&, B(E) must behave like
factor € #F for a given 8. Both approaches can be easily 1
mapped into each other by considering a new probability B(E) ~ ‘B0E<1+—02E2) (9)
density f(B8)=c-f(B)/Z(B), wherec is a normalization con- 2
stant. One immediately recognizes that type-B superstatisticads E— 0. This approximation represents the leading order
with f is equivalent to type-A superstatistics with correction to ordinqry statistical mechanics_ in our nonhomo-

As mentioned before, the fluctuations of the intensive pageneous system with temperature fluctuations for small val-
rameterg are spatiotemporal: they can be produced by eithep€s of the energfz. The zeroth-order approximation B{E)
temporal changes of the environment or by the movement gforresponds, as is expected, to the “pure” Boltzmann statis-
a test particle through inhomogeneous spatial regions. Th#CS,
precise nature and behavior gfin these situations can be B(E) ~ e PoE (10)
quite varied. In our general description of superstatistics, we '
have takerB to be an inverse temperature which varies ran-with inverse temperaturg,. It can be noted that these two
domly in time or in space, by8 can also represent, say, a asymptotic results can also be considered to be valid ap-
chemical potential that varies smoothly in space. In this wayproximations ofB(E) in the limit where{(B,-8)*)— 0 for
one may study superstatistical models where the fluctuationsll k=2, that is essentially whe(8) — &(8-8,) (small
of B are caused by large-scale temperature gradients in fjuctuations limij.
system[6] or by a nonuniform chemical potential describing
inhomogeneous concer]trations spre_ad in space. o IV. HIGH-ENERGY ASYMPTOTICS

From a more dynamical perspective, a superstatistics can
also be achieved by considering Langevin equations whose To find the high-energy asymptotics BfE), we use the
parameters fluctuate on a relatively large time sd#ie  fact that the integral defininB(E) has the form of a Laplace
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FIG. 1. Plot of a typical unimodal distributiof{3) (top) and its
logarithm (bottom). The dominant inverse temperatygg is such
that Inf(Bg) has a slope equal to the energy vakie

integral for E—< [34]. In this limit, the integral can be
approximated by its largest integrand. This is the essence

Laplace method, otherwise known as the saddle-point apg

proximation[34,35. The conditions of applicability of this

approximation method are basically the conditions that we

have assumed regarding the shapd (@) and its differen-
tiability. Thus, puttingB(E) in the form

B(E) = f i e PEINTBgR, (11)
0
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f(Be)ePeE
V=[Inf(Bp)]"

which differs from the Laplace approximation only by the
square-root term involving the curvature offiiB).

The Laplace approximation @&(E) as well as its Gauss-
ian corrected version shown above are quite interesting from
the physical point of view because they show that the mix-
ture of Boltzmann statistics defining(E) reduces at high-
energyE to a “pure” Boltzmann statistics, just like in the
equilibrium situation, although now the Boltzmann statistics
involves an inverse temperatu@ which depends on the
energyE considered. This means that, for high value€pf
the long-term, stationary behavior of the nonequilibrium sys-
tem considered is dominated by the equilibrium behavior of
a subset of cells having an inverse temperature equal or close
to Bg. How Bz changes as a function &fis determined from
the properties of (B). In the general case considered here,
where Inf(8) concave, we find thgBg — 0 whenE— « (see
gfig. 1). Thus in this case the large-energy behavior of the
eneralized Boltzmann facto8(E) is determined by the
small8 (high temperaturebehavior of the functiorf(g).

To complete this section, note that the exponent function
® (B, E) which enters in the asymptotics BfE) represents
nothing but the Legendre transform offi(B). The result of
this transform is a function d& which can be thought of to
represent, following the theory of large deviatidi@6], an
entropy function if we consider that the functionfiiB) rep-
resents a free energy function. This entropy function,
however, is just a formal one and is unrelated to the Tsallis

B(E) ~ (14

we attempt to locate the largest integrand by finding theentropies or other generalized entropies as defined in

unique value ofB which maximizes the exponent function,

®(B,E)=-BE+Inf(p),

for any large enough energy valie We call the value of3
maximizing ®(3,E) for fixed E the dominant inverse tem-
peratureand denote it by3g. The fact thaf (8) is assumed to
be unimodal ensures us that is unique, as required. In-
deed, observe that Ii{3) must be a concave function gfif
f(B) is unimodal(see Fig. 1, and, in this case, the maximum
of ®(B,E) along theg direction can only be attained at a
single pointBg which is such that

_F®

1) (12

E=[Inf(B)]'

Solving this equation foB, we find B¢ and thus write

B(E) ~ e®PeB) = g FeB+n 1(6e) = §( B)e PeF (13)

in the limit whereE—cc. Note that this basic Laplace or
saddle-point approximation d8(E) can be improved a bit
more by evaluating the integral definiBgE) using a Gauss-
ian approximation of the integrari®4]. What results from

Refs.[10,23.

V. EXAMPLES

We now consider a few cases 8f— 0 asymptotic behav-
ior of f(B) and derive the corresponding asymptotic behavior
of B(E) for E— o0 using the Laplace approximation BfE)
corrected with the square-root term, i.e., Et4).

A. Power-law talil

Consider first arf(g) with f(8) ~ B”, y>0 for 85— 0. An
example of probability density having this asymptotic form
is the following x? distribution for 3 [27,28:

iy

(Bo=0, n>1), which behaves af{8) ~ 8"?>" aroundg=0.
Another example is th€& distribution[1,19],

n n/2
_> IBnlz—le—nB/(ZBO)

2B

f(B) = (15

ﬁ(U/Z)—l

f(B) = C( (16)

vb )(v+w)/2’
1+—
wh

this more refined approximation is the following high-energywherev, w, b are parameters ard is a normalization con-

asymptotics:

stant.
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To find the asymptotic form of the superstatistB&E)

corresponding to the choidé€g) ~ 87, we proceed to deter-

mine the value of the dominant inverse temperatggeby
solving Eq.(12). The solution here i8z=y/E, so that

-BeE+Inf(Bg)=—y+yIny-=yINE~-yInE
(17)

and

E2
[In f(ﬁe)]”=—ﬁ—7|2£= -~ -F

Combining the two results in Eq13), we obtain

(18)

~yInE
=gt

B(E) ~

Thus we see that power laws ghfor small 8 imply a power

law in E for large E, no matter what the rest of the distribu-
tion f(B) looks like. Comparing this asymptotic result with
theg-exponential distributions studied in nonextensive statis
tical mechanics[23-26, which asymptotically decay as

E 1D e see that

1
’y+1:qT1. (19

PHYSICAL REVIEW Er1, 016131(2005

@ BeEtIn f(Be) S
B(E) ~ —=~E""%" (29
V=[Inf(Be)]"
using the fact that
2c  2E%2
~-E% (25)

[Inf(Bp)]"=- B_E =T

Here the effeﬁtive Boltzmann fact@(E) decays as an ex-
ponential ofVE. In particular, ifE=(1/2)u? is a kinetic en-
ergy, one obtains distributions that exhibit exponential tails
in the velocityu [5]. This type of exponential behavior has
been observed for stationary distributions of the complex
Ginzburg Landau equatidi87], as well as in fusion plasma
experimentg§19].

C. Stretched exponential tail

As a generalization of the previous example, consider a
)
density f(8) which behaves a$(B) ~e ", with ¢>0, &

<0 asB—0. This particular form of stretched exponential
implies a high-energy behavior &(E) which also has the
form of a stretched exponential. Indeed, solving the differen-
tial equation satisfied byg:

[Inf(8)]' =-cop’*=cl8p*=E, (26)

Power-law superstatistics are physically relevant for manye fing

different physical problems: e.g., defect turbulefté|, cos-
mic ray statistic$18], and wind velocity measuremen@0],
among others.

B. Exponential tail

Consider now a densitf(3) having the asymptotic form
f(B)~e 9, ¢c>0, asB—0. An example is the inversg?
distribution

ﬂm=—£%<2?ywﬂ”*%ﬂwm> (20)
(3)
(Bo>0, n>1), which behaves, fop— 0, as follows:
f(,B) — IB—nIZ—Ze—nBOI(Z,B) — e—n,Bol(2B)' (21)

This form of f(8) was previously considered in the context

of density fluctuations in fusion plasma experimeli8] as
well as temperature fluctuations in perfect gafgl and
arises if the temperatuf®=(kg8)* rather thang itself is x?
distributed.

For this example, the equation that we need to solve to

find Bg is simply

c
[(Inf(B] :E:E' (22

and soBg=Vc/E. As a result,
— BeE+In f(Bg) = — 2\cE (23)

and

E \ U6

R -
= \dld

With this value offBg, the curvature of Irf(B) is asymptoti-

cally evaluated as follows:

[In f(Bp)]" =-cda6-1)BL*>

E (6-2)/(6-1)
cao-a £
cld]

~ — E(6-2/(6-1) (28)

Similarly, the Legendre transform of fig) is found to be-
have as

SI(5-1) c o
- BeE+Inf(Be) = — — — gL
o6 = (gD (gD
Eﬁ/(é—l) 1 g
= W 1- ﬁ =aEJ(> D (29

asE— . From Eq.(14), we consequently obtain

B(E) ~ E(2—5)/(26—2)eaE‘$/(‘9'1)_ (30)
Stretched exponentials are relevant for observed distribu-
tions in hydrodynamic turbulend®9], plasma experiments
[30], as well as in granular med[&1]. It is worth pointing
out that the idea of superposing exponential factors to obtain
a stretched exponential factor has been used previously by
Palmeret al.[38] to model anomalous relaxation dynamics;
see also Ref[39] for applications of the same idea in the
context of dissipative fluxes dynamics.
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D. Constant tail

So far we have assumed thidj3) — 0 as3— 0. We next
consider a case wheff¢3) goes to some constant gs— 0.
For this case, the differential equation defini8g poses a
problem becauskn f(8)]’ does not diverge g8 approaches

0. To defineBg, we must then resort to find the largest valu
of ®(B,E) directly without the use of derivatives. As an

example, consider the case where ghe 0 behavior off(3)
is given byf(B) ~a, with a>0. Then,

Be = arg sug- BE + In a} = arg sug— BE}, (31
B B

which implies thatBg=0 for all E>0. ConsequentlyB(E)
must behave like a constant Bs—«, since
- BeE+Inf(Bg) =Ina. (32

This is not a very interesting case physically becaBid®) is
not normalizable. Note that a constant asymptoticsBic)
is also recovered if(8) ~ae?, a>0, ¢>0.

E. Log-normal distribution

PHYSICAL REVIEW ¥, 016131(2005

A more manageable asymptotics can be found analytically
by expanding the exponential termdr(y,E) aroundy=0 to
first, second, or third order iy, and then find the maximum
of the corresponding approximation @y, E) to obtain an
approximation of the Laplace asymptotics BfE) found

eabove. This method is described in Re40], and yields

surprising good results already at third orderidespite the
fact thatyg— -« when E—« (recall that3—0 asE—o
and thaty=In B).

VI. INVERSE PROBLEM

The inverse transform of the Laplace transform defining
B(E) has the form

CHioo

B(E)e’EdE,

c-iw

1
f(B) ==

2l (39)

wherec is an arbitrary constant lying in the domain of defi-
nition of B(E). From this integral, we are in a position to
predict the— 0 or 8— < behavior thaff(8) needs to have

in order for B(E) to behave according to some prescribed

For our final example, we consider the case wherdorm. This is the inverse problem of the previous sections,
BE(0,) is distributed according to the log-normal density namely: given a prescribed form f8(E), what is the behav-

H(B) = % ex-c(n B-b)?], (39)

wherea, b, andc are all positive constants. With this density,

the integral defining the stationary distributiB(E) takes the
form

“d
B(E)=a f EB “HEgrelin 5-b)° (34)
0
This is equivalent to
B(E)=a j gy ~D*Edyy (35)

using the change of variablgsIn 8. At this point, we pro-
ceed as before to find the asymptotic behavioBOE) as
E—o by locating the saddle poingz of Eq. (35 which
maximizes the exponent function

®(y,E) = -c(y-b)*>- E¢’ (36)
over all real values ofy. The exact solution ofjz can be
found to be given by

Ye=~ (E—eb)+b. (37)

2c

whereW(x) is the Lambert or product-log function defined as

the principal branch solution of the equatig®’=x. The
Laplace approximation dB(E) which results from this solu-
tion for yg is

Ee’\?
In B(E) ~ (I)(yE'E) =- CW(E) — Ee_W(EéDIZC)"'b.

(38)

ior of f(8)?

We will not reflect much on this inverse problem because
the asymptotic methods that can be used to solve it are ex-
actly the same as those described in the context of the direct
problem. On the one hand, in the lin®— 0, we may pro-
ceed just as in Sec. Ill to expand the exponential teffnin
Eq. (39) to obtain a Taylor series fdi(B):

_ 1 BE® )
f(B) = o) B(E)(l +BE + > + dE
=agtaB+ayBi+ -, (40
where
_ 1 (e (BE)X
a = o fc_im B(E) " dE. (41)

The coefficienta, can be computed by rotating the complex
integral shown above to the real line with the substitution
E—iE. On the other hand3— o asymptotics forf(8) can

be found in just the same way &— o asymptotics were
found forB(E) using the Laplace method. At the level of the
inverse Laplace transform integral definif@3), the appli-
cation of this approximation method corrected with the
Gaussian term yields

e,BEB+In B(Eﬂ)
for B— oo, whereEg is now found by solving the equation
[InB(E)]'=-8 (43

for E. This represents a valid approximationfdf3) at large
values ofg (low-temperature limitprovided, as was the case
for f(B), that B(E) is unimodal and differentiable. It is im-

f(B) ~ (42)
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portant to notice that the energy vallig taken as function versally determines the form of the high-energy tail of
of B is not the inverse function g8g. In the direct problem, observed distributions is the lo@ (high temperatunebehav-

Be is found forE—<, and in that limit we have seen that ior of the mixing distributionf(8) which defines at the bot-
Be—0. For the asymptotics of the inverse problem, how-tom the superstatistical model. The spectrum of possibilities
ever, we consider the limjg— . where our results can be applied is quite broad. It contains
the power-law distributions of nonextensive statistical me-
chanics as a special case, but it is also relevant for stretched

) ) ) exponentials or lognormal superstatistics, as we have dem-
We have analyzed the main asymptotic properties of gengnstrated.

eral superstatistics which are convex superpositions of Boltz-
mann exponential factors. The saddle-point approximation
method turns out to be useful to treat this problem in full
generality. In practice, our methods allow us to construct We thank Stefano Ruffo for useful comments on the
simple superstatistical models that may underlie an experimanuscript. H.T. was supported by the Natural Sciences and
mentally measured “fat tail” distribution in a driven nonequi- Engineering Research Council of Canada and the Royal So-
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