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Superstatistics are superpositions of different statistics relevant for driven nonequilibrium systems with
spatiotemporal inhomogeneities of an intensive variablese.g., the inverse temperatured. They contain Tsallis
statistics as a special case. We develop here a technique that allows us to analyze the large energy asymptotics
of the stationary distributions of general superstatistics. A saddle-point approximation is developed which
relates this problem to a variational principle. Several examples are worked out in detail.
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I. INTRODUCTION

Many driven nonequilibrium systems exhibit complex dy-
namical behavior characterized by spatiotemporal fluctua-
tions of an intensive parameterb which may represent an
inverse temperature, a chemical potentialse.g., in a system
with inhomogeneous concentrationsd, an effective friction
constant, the amplitude of a perturbing noise, or the local
energy dissipation, as in the case of turbulent flows. Al-
though such systems do not settle to equilibrium, their long-
term behavior can often be described in the spirit of equilib-
rium statistical mechanics by viewing them as consisting of
an ensemble of subsystems or “cells” to which are associated
different values ofb. If there is local equilibrium in each
cell, so that statistical mechanics can be applied locally, and
if the fluctuations ofb evolve on a sufficiently large time
scale, then in the long-term run the entire system can be
described by a mixture or superposition of different Boltz-
mann factors having different values ofb. Such a mixture of
various statistics has been termed a “superstatistics”f1g and
has been the subject of various papers latelyssee, e.g., Refs.
f2–12gd. Many models based on the notion of superstatistics
have also been applied successfully to a variety of physical
problems, including Lagrangianf13,14g and Eulerian turbu-
lence f15,16g, defect turbulencef17g, cosmic ray statistics
f18g, plasmasf19g, statistics of wind velocity differences
f20g, and econophysicsf21,22g.

What is common to all these problems is the experimental
observation of stationary distributions having “fat” tails.
Such distributions fall necessary outside the framework of
ordinary statistical mechanics, but not that of superstatistics.
For example, if the random intensive parameterb in the
various cells is taken to be distributed according to a particu-
lar probability distribution, thex2 distribution, then the cor-
responding superstatistics, obtained by integrating the Boltz-
mann factore−bE over allb, yields the nonextensive statistics
of Tsallis defined by the so-calledq-exponential function
f23–26g

eq
−b0E = f1 + sq − 1db0Eg−1/sq−1d. s1d

This particular statistics decays as a power law for large
energiesE rather than an exponential, as is the case for the

ordinary Boltzmann factor. In this sense, it is a fat-tailed
statistics. The parameterb0 above is related in the super-
statistical model to the average inverse temperature of the
inhomogeneous system, whereas the so-called entropic index
q relates to the variance of theb fluctuationsf27,28g. It is
worth mentioning that distributions having the form of aq
exponential can be obtained formally by maximizing Tsal-
lis’s measure of entropy subject to suitable constraints.
Moreover, ordinary statistical mechanics, which correspond
in the superstatistics picture to the case where there are no
fluctuations in b, is recovered in the limit whereq→1
f23–26g.

For other distributions of the intensive parameterb, one
ends up with more general superstatistics. Generalized entro-
pies, which are analogs of the Tsallis entropies, can also be
defined for these general superstatisticsf9,10g, and general-
ized versions of statistical mechanics can be constructed, at
least in principle. It has been shown that the corresponding
generalized entropies are stablef8,11g.

In this paper we will briefly review the superstatistics
concept, and then analyze the asymptotic behavior of general
superstatistics for large values of the energyE. We will in-
vestigate how the properties of the functionfsbd, which rep-
resents the probability distribution of the intensive variableb
in the various spatial cells, determine the asymptotic decay
rate of the generalized Boltzmann factor of the superstatis-
tics. We develop a saddle-point approximation technique
which allows us to treat this problem in full generality. Sev-
eral examples will be worked out in detail to show that the
asymptotic decay rate of the stationary distributions resulting
from fsbd cannot only be a power law, as in the case of
nonextensive statistics, but can also be an exponential of the
square root of the energy or, generally, a stretched exponen-
tial. We will discuss universal aspects of the large energy
asymptotics, thus complementing the consideration in Ref.
f1g where universal aspects of the low-energy behavior of
general superstatistics were discussed. The large energy as-
ymptotics is of particular physical importance because the
tails of the observed distributions measured in various ex-
perimentsse.g., hydrodynamic turbulencef29g, plasmasf30g,
and granular mediaf31gd can distinguish between the various
possible types of superstatistics.
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II. SUPERSTATISTICS: BASIC CONCEPT

Let us first briefly review the superstatistics concept as
introduced in Ref.f1g. Consider a driven nonequilibrium sys-
tem with spatiotemporal fluctuations of an intensive param-
eterb, for example, the inverse temperature. Locally, i.e., in
spatial regionsscellsd whereb is approximately constant, the
system is described by ordinary statistical mechanics, i.e., by
an ordinary Boltzmann factore−bE, whereE is an effective
energy in each cell. In the long-term run, the system is de-
scribed by a spatiotemporal average over the fluctuatingb.
In this way, one may define an effective Boltzmann factor
BsEd for the whole system as

BsEd =E
0

`

fsbde−bEdb = ke−bEl, s2d

wherefsbd is the normalized probability distribution describ-
ing the b fluctuations in the various cells. For so-called
type-A superstatistics, one normalizes this effective Boltz-
mann factor and obtains the stationary, long-term probability
distribution,

psEd =
1

Z
BsEd, s3d

where

Z =E
0

`

BsEddE. s4d

For type-B superstatistics, theb-dependent normalization
constant of each local Boltzmann factor is included into the
averaging process. In this case, the invariant long-term dis-
tribution is given by

psEd =E
0

`

fsbd
e−bE

Zsbd
db, s5d

whereZsbd is the normalization constant of the Boltzmann
factor e−bE for a given b. Both approaches can be easily
mapped into each other by considering a new probability

density f̃sbd=c· fsbd /Zsbd, wherec is a normalization con-
stant. One immediately recognizes that type-B superstatistics

with f is equivalent to type-A superstatistics withf̃.
As mentioned before, the fluctuations of the intensive pa-

rameterb are spatiotemporal: they can be produced by either
temporal changes of the environment or by the movement of
a test particle through inhomogeneous spatial regions. The
precise nature and behavior ofb in these situations can be
quite varied. In our general description of superstatistics, we
have takenb to be an inverse temperature which varies ran-
domly in time or in space, butb can also represent, say, a
chemical potential that varies smoothly in space. In this way,
one may study superstatistical models where the fluctuations
of b are caused by large-scale temperature gradients in a
systemf6g or by a nonuniform chemical potential describing
inhomogeneous concentrations spread in space.

From a more dynamical perspective, a superstatistics can
also be achieved by considering Langevin equations whose
parameters fluctuate on a relatively large time scalesthe

adiabatic regimef32gd; see Ref.f28g for details. For turbu-
lence applications, for example, one may consider a super-
statistical extension of the Sawford model of Lagrangian tur-
bulencef13,14,33g. This model consists of suitable stochastic
differential equations for the position, velocity, and accelera-
tion of a Lagrangian test particle in the turbulent flow. The
superstatistical extension naturally enters due to the fact that
the local energy dissipation rate in turbulent flows is a ran-
dom variable. Thus the parameters of the Sawford model
become random variables as well. These kinds of models
well reproduce experimentally measured turbulence data
f13,14g.

In the following we will use the notation of type-A super-
statistics, keeping in mind that we can always proceed to

type-B superstatistics by replacingf by f̃. We will restrict
ourselves to positive values ofb andE and will assume, in
addition, thatfsbd is everywhere differentiable and unimodal
ssingle-bell-shaped curved.

III. LOW-ENERGY ASYMPTOTICS

We recall the low-energy asymptotics of superstatistics
for reasons of completeness; it was previously discussed in
Ref. f1g. Consider a distributionfsbd having meankbl=b0

and variance

kb2l − kbl2 = kb2l − b0
2 = s2. s6d

Using the definition ofBsEd, we can write

BsEd = ke−bEl = e−b0Eke−sb−b0dEl. s7d

Then, expanding in Taylor series the exponential term inside
the expected value, we obtain

BsEd = e−b0ES1 +
1

2
s2E2 + o

k=3

`

ksb0 − bdklEk

k!
D . s8d

Thus, to second order inE, BsEd must behave like

BsEd , e−b0ES1 +
1

2
s2E2D s9d

as E→0. This approximation represents the leading order
correction to ordinary statistical mechanics in our nonhomo-
geneous system with temperature fluctuations for small val-
ues of the energyE. The zeroth-order approximation toBsEd
corresponds, as is expected, to the “pure” Boltzmann statis-
tics,

BsEd , e−b0E, s10d

with inverse temperatureb0. It can be noted that these two
asymptotic results can also be considered to be valid ap-
proximations ofBsEd in the limit whereksb0−bdkl→0 for
all kù2, that is essentially whenfsbd→dsb−b0d ssmall
fluctuations limitd.

IV. HIGH-ENERGY ASYMPTOTICS

To find the high-energy asymptotics ofBsEd, we use the
fact that the integral definingBsEd has the form of a Laplace
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integral for E→` f34g. In this limit, the integral can be
approximated by its largest integrand. This is the essence of
Laplace method, otherwise known as the saddle-point ap-
proximation f34,35g. The conditions of applicability of this
approximation method are basically the conditions that we
have assumed regarding the shape offsbd and its differen-
tiability. Thus, puttingBsEd in the form

BsEd =E
0

`

e−bE+ln fsbddb, s11d

we attempt to locate the largest integrand by finding the
unique value ofb which maximizes the exponent function,

Fsb,Ed = − bE + ln fsbd,

for any large enough energy valueE. We call the value ofb
maximizing Fsb ,Ed for fixed E the dominant inverse tem-
peratureand denote it bybE. The fact thatfsbd is assumed to
be unimodal ensures us thatbE is unique, as required. In-
deed, observe that lnfsbd must be a concave function ofb if
fsbd is unimodalssee Fig. 1d, and, in this case, the maximum
of Fsb ,Ed along theb direction can only be attained at a
single pointbE which is such that

E = fln fsbdg8 =
f8sbd
fsbd

. s12d

Solving this equation forb, we find bE and thus write

BsEd , eFsbE,Ed = e−bEE+ln fsbEd = fsbEde−bEE s13d

in the limit whereE→`. Note that this basic Laplace or
saddle-point approximation ofBsEd can be improved a bit
more by evaluating the integral definingBsEd using a Gauss-
ian approximation of the integrandf34g. What results from
this more refined approximation is the following high-energy
asymptotics:

BsEd ,
fsbEde−bEE

Î− fln fsbEdg9
s14d

which differs from the Laplace approximation only by the
square-root term involving the curvature of lnfsbd.

The Laplace approximation ofBsEd as well as its Gauss-
ian corrected version shown above are quite interesting from
the physical point of view because they show that the mix-
ture of Boltzmann statistics definingBsEd reduces at high-
energyE to a “pure” Boltzmann statistics, just like in the
equilibrium situation, although now the Boltzmann statistics
involves an inverse temperaturebE which depends on the
energyE considered. This means that, for high values ofE,
the long-term, stationary behavior of the nonequilibrium sys-
tem considered is dominated by the equilibrium behavior of
a subset of cells having an inverse temperature equal or close
to bE. How bE changes as a function ofE is determined from
the properties offsbd. In the general case considered here,
where lnfsbd concave, we find thatbE→0 whenE→` ssee
Fig. 1d. Thus in this case the large-energy behavior of the
generalized Boltzmann factorsBsEd is determined by the
small-b shigh temperatured behavior of the functionfsbd.

To complete this section, note that the exponent function
FsbE,Ed which enters in the asymptotics ofBsEd represents
nothing but the Legendre transform of lnfsbd. The result of
this transform is a function ofE which can be thought of to
represent, following the theory of large deviationsf36g, an
entropy function if we consider that the function lnfsbd rep-
resents a free energy function. This entropy function,
however, is just a formal one and is unrelated to the Tsallis
entropies or other generalized entropies as defined in
Refs.f10,23g.

V. EXAMPLES

We now consider a few cases ofb→0 asymptotic behav-
ior of fsbd and derive the corresponding asymptotic behavior
of BsEd for E→` using the Laplace approximation ofBsEd
corrected with the square-root term, i.e., Eq.s14d.

A. Power-law tail

Consider first anfsbd with fsbd,bg, g.0 for b→0. An
example of probability density having this asymptotic form
is the followingx2 distribution forb f27,28g:

fsbd =
1

GSn

2
DS

n

2b0
Dn/2

bn/2−1e−nb/s2b0d s15d

sb0ù0, n.1d, which behaves asfsbd,bn/2−1 aroundb=0.
Another example is theF distribution f1,19g,

fsbd = C
bsv/2d−1

S1 +
vb

w
bDsv+wd/2 , s16d

wherev, w, b are parameters andC is a normalization con-
stant.

FIG. 1. Plot of a typical unimodal distributionfsbd stopd and its
logarithm sbottomd. The dominant inverse temperaturebE is such
that ln fsbEd has a slope equal to the energy valueE.
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To find the asymptotic form of the superstatisticsBsEd
corresponding to the choicefsbd,bg, we proceed to deter-
mine the value of the dominant inverse temperaturebE by
solving Eq.s12d. The solution here isbE=g /E, so that

− bEE + ln fsbEd = − g + g ln g − g ln E , − g ln E

s17d

and

fln fsbEdg9 = −
g

bE
2 = −

E2

g
, − E2. s18d

Combining the two results in Eq.s13d, we obtain

BsEd ,
e−g ln E

E
= E−g−1.

Thus we see that power laws inb for smallb imply a power
law in E for largeE, no matter what the rest of the distribu-
tion fsbd looks like. Comparing this asymptotic result with
theq-exponential distributions studied in nonextensive statis-
tical mechanicsf23–26g, which asymptotically decay as
E−1/sq−1d, we see that

g + 1 =
1

q − 1
. s19d

Power-law superstatistics are physically relevant for many
different physical problems: e.g., defect turbulencef17g, cos-
mic ray statisticsf18g, and wind velocity measurementsf20g,
among others.

B. Exponential tail

Consider now a densityfsbd having the asymptotic form
fsbd,e−c/b, c.0, asb→0. An example is the inversex2

distribution

fsbd =
b0

GSn

2
DS

nb0

2
Dn/2

b−n/2−2e−nb0/s2bd s20d

sb0.0, n.1d, which behaves, forb→0, as follows:

fsbd , b−n/2−2e−nb0/s2bd , e−nb0/s2bd. s21d

This form of fsbd was previously considered in the context
of density fluctuations in fusion plasma experimentsf19g as
well as temperature fluctuations in perfect gasesf5g, and
arises if the temperatureT=skBbd−1 rather thanb itself is x2

distributed.
For this example, the equation that we need to solve to

find bE is simply

fln fsbdg8 =
c

b2 = E, s22d

and sobE=Îc/E. As a result,

− bEE + ln fsbEd = − 2ÎcE s23d

and

BsEd ,
e−bEE+ln fsbEd

Î− fln fsbEdg9
, E−3/4e−2ÎcE s24d

using the fact that

fln fsbEdg9 = −
2c

bE
3 = −

2E3/2

c1/2 , − E3/2. s25d

Here the effective Boltzmann factorBsEd decays as an ex-
ponential ofÎE. In particular, ifE=s1/2du2 is a kinetic en-
ergy, one obtains distributions that exhibit exponential tails
in the velocityu f5g. This type of exponential behavior has
been observed for stationary distributions of the complex
Ginzburg Landau equationf37g, as well as in fusion plasma
experimentsf19g.

C. Stretched exponential tail

As a generalization of the previous example, consider a
density fsbd which behaves asfsbd,e−cbd

, with c.0, d
,0 asb→0. This particular form of stretched exponential
implies a high-energy behavior ofBsEd which also has the
form of a stretched exponential. Indeed, solving the differen-
tial equation satisfied bybE:

fln fsbdg8 = − cdbd−1 = cudubd−1 = E, s26d

we find

bE = S E

cuduD
1/sd−1d

. s27d

With this value ofbE, the curvature of lnfsbd is asymptoti-
cally evaluated as follows:

fln fsbEdg9 = − cdsd − 1dbE
d−2

= − cdsd − 1dS E

cuduD
sd−2d/sd−1d

, − Esd−2d/sd−1d. s28d

Similarly, the Legendre transform of lnfsbd is found to be-
have as

− bEE + ln fsbEd =
Ed/sd−1d

scudud1/sd−1d −
c

scududd/sd−1dE
d/sd−1d

=
Ed/sd−1d

scudud1/sd−1dS1 −
1

uduD = aEd/sd−1d s29d

asE→`. From Eq.s14d, we consequently obtain

BsEd , Es2−dd/s2d−2deaEd/sd−1d
. s30d

Stretched exponentials are relevant for observed distribu-
tions in hydrodynamic turbulencef29g, plasma experiments
f30g, as well as in granular mediaf31g. It is worth pointing
out that the idea of superposing exponential factors to obtain
a stretched exponential factor has been used previously by
Palmeret al. f38g to model anomalous relaxation dynamics;
see also Ref.f39g for applications of the same idea in the
context of dissipative fluxes dynamics.
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D. Constant tail

So far we have assumed thatfsbd→0 asb→0. We next
consider a case wherefsbd goes to some constant asb→0.
For this case, the differential equation definingbE poses a
problem becausefln fsbdg8 does not diverge asb approaches
0. To definebE, we must then resort to find the largest value
of Fsb ,Ed directly without the use of derivatives. As an
example, consider the case where theb→0 behavior offsbd
is given by fsbd,a, with a.0. Then,

bE = arg sup
b

h− bE + ln aj = arg sup
b

h− bEj, s31d

which implies thatbE=0 for all E.0. Consequently,BsEd
must behave like a constant asE→`, since

− bEE + ln fsbEd = ln a. s32d

This is not a very interesting case physically becauseBsEd is
not normalizable. Note that a constant asymptotics forBsEd
is also recovered iffsbd,ae−cb, a.0, c.0.

E. Log-normal distribution

For our final example, we consider the case where
b[ s0,`d is distributed according to the log-normal density

fsbd =
a

b
expf− csln b − bd2g, s33d

wherea, b, andc are all positive constants. With this density,
the integral defining the stationary distributionBsEd takes the
form

BsEd = aE
0

` db

b
e−bEe−csln b − bd2. s34d

This is equivalent to

BsEd = aE
−`

`

e−csy − bd2−Eey
dy s35d

using the change of variablesy=ln b. At this point, we pro-
ceed as before to find the asymptotic behavior ofBsEd as
E→` by locating the saddle pointyE of Eq. s35d which
maximizes the exponent function

Fsy,Ed = − csy − bd2 − Eey s36d

over all real values ofy. The exact solution ofyE can be
found to be given by

yE = − WSEeb

2c
D + b, s37d

whereWsxd is the Lambert or product-log function defined as
the principal branch solution of the equationyey=x. The
Laplace approximation ofBsEd which results from this solu-
tion for yE is

ln BsEd , FsyE,Ed = − cWSEeb

2c
D2

− Ee−WsEeb/2cd+b.

s38d

A more manageable asymptotics can be found analytically
by expanding the exponential term inFsy,Ed aroundy=0 to
first, second, or third order iny, and then find the maximum
of the corresponding approximation ofFsyE,Ed to obtain an
approximation of the Laplace asymptotics ofBsEd found
above. This method is described in Ref.f40g, and yields
surprising good results already at third order iny despite the
fact that yE→−` when E→` srecall thatb→0 asE→`
and thaty=ln bd.

VI. INVERSE PROBLEM

The inverse transform of the Laplace transform defining
BsEd has the form

fsbd =
1

2pi
E

c−i`

c+i`

BsEdebEdE, s39d

wherec is an arbitrary constant lying in the domain of defi-
nition of BsEd. From this integral, we are in a position to
predict theb→0 or b→` behavior thatfsbd needs to have
in order for BsEd to behave according to some prescribed
form. This is the inverse problem of the previous sections,
namely: given a prescribed form forBsEd, what is the behav-
ior of fsbd?

We will not reflect much on this inverse problem because
the asymptotic methods that can be used to solve it are ex-
actly the same as those described in the context of the direct
problem. On the one hand, in the limitb→0, we may pro-
ceed just as in Sec. III to expand the exponential termebE in
Eq. s39d to obtain a Taylor series forfsbd:

fsbd =
1

2pi
E

c−i`

c+i`

BsEdS1 + bE +
b2E2

2
+ ¯DdE

= a0 + a1b + a2b2 + ¯, s40d

where

ak =
1

2pi
E

c−i`

c+i`

BsEd
sbEdk

k!
dE. s41d

The coefficientak can be computed by rotating the complex
integral shown above to the real line with the substitution
E→ iE. On the other hand,b→` asymptotics forfsbd can
be found in just the same way asE→` asymptotics were
found forBsEd using the Laplace method. At the level of the
inverse Laplace transform integral definingfsbd, the appli-
cation of this approximation method corrected with the
Gaussian term yields

fsbd ,
ebEb+ln BsEbd

Î− fln BsEbdg9
, s42d

for b→`, whereEb is now found by solving the equation

fln BsEdg8 = − b s43d

for E. This represents a valid approximation offsbd at large
values ofb slow-temperature limitd provided, as was the case
for fsbd, that BsEd is unimodal and differentiable. It is im-
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portant to notice that the energy valueEb taken as function
of b is not the inverse function ofbE. In the direct problem,
bE is found for E→`, and in that limit we have seen that
bE→0. For the asymptotics of the inverse problem, how-
ever, we consider the limitb→`.

VII. CONCLUSION

We have analyzed the main asymptotic properties of gen-
eral superstatistics which are convex superpositions of Boltz-
mann exponential factors. The saddle-point approximation
method turns out to be useful to treat this problem in full
generality. In practice, our methods allow us to construct
simple superstatistical models that may underlie an experi-
mentally measured “fat tail” distribution in a driven nonequi-
librium system. In this context, we have seen that what uni-

versally determines the form of the high-energy tail of
observed distributions is the lowb shigh temperatured behav-
ior of the mixing distributionfsbd which defines at the bot-
tom the superstatistical model. The spectrum of possibilities
where our results can be applied is quite broad. It contains
the power-law distributions of nonextensive statistical me-
chanics as a special case, but it is also relevant for stretched
exponentials or lognormal superstatistics, as we have dem-
onstrated.
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